Книжнерман Леонид Аронович — список статей и патентов

Список статей

  1. Л. А. Книжнерман, А. Л. Плешкевич
    Алгоритм решения обратной динамической задачи акустики для вертикально-неоднородной модели среды и точечного источника
    Труды IV Международной геолого-геофизической конференции «ГеоЕвразия-2021», т. I, с. 259-262.
  2. Sofia Davydycheva, Vladimir Druskin, Leonid Knizhnerman, and Michael Rabinovich
    Quality control of ultra-deep resistivity imaging using fast 3D electromagnetic modeling
    SEG Technical Program Expanded Abstracts 2020, p. 380-384.
  3. Mike A. Botchev, Leonid A. Knizhnerman, Eugene E. Tyrtyshnikov
    A residual concept for Krylov subspace evaluation of the φ matrix function
    arXiv:2010.08494
  4. Mikhail A. Botchev, Leonid A. Knizhnerman
    ART: adaptive residual-time restarting for Krylov subspace matrix exponential evaluations
    Journal of Computational and Applied Mathematics, 2020, v. 364, p. 2-14.
  5. Л. А. Книжнерман
    Численное моделирование монохроматических акустических волн от точечного источника в неоднородном по глубине полупространстве с помощью поглощающего граничного условия
    Труды Международной геолого-геофизической конференции «ГеоЕвразия-2020», М., 3-6 февраля 2020 г., т. III, с. 85-88.
  6. В. Л. Друскин, М. Ю. Заславский, Л. А. Книжнерман
    Применение рационального метода Арнольди для приближённого вычисления матричных функций с параметром
    Тезисы конференции «Современные проблемы вычислительной математики и математической физики» памяти академика А.А.Самарского к 100-летию со дня рождения, М., МГУ, 18-20 июня 2019 г., с. 93-94.
  7. В. Л. Друскин, М. Ю. Заславский, Л. А. Книжнерман
    Оптимизированное применение рационального метода Арнольди при приближённом решении двух нестационарных задач электроразведки
    XVII Международная конференция "Супервычисления и математическое моделирование", Саров, 15-19 октября 2018, тезисы докладов, с. 57-58.
  8. Л. А. Книжнерман
    Обзор вычислительно-математических проектов отдела математического моделирования Центральной геофизической экспедиции с 1980 по 2017 год
    Материалы XV Международной конференции "Алгебра, теория чисел и дискретная геометрия: современные проблемы и приложения", посвященной столетию со дня рождения доктора физико-математических наук, профессора Московского государственного университета имени М. В. Ломоносова Коробова Николая Михайловича, Тула, 28-31 мая 2018 года, с. 350-353.
  9. Л. А. Книжнерман, М. Д. Хусид, Т. Ф. Дьяконова
    Применение метода последовательных боковых поправок к численному решению осесимметричной обратной задачи электрического и индукционного каротажа для геологических сред с диагонально-анизотропными пластами
    Геофизика, 2017, специальный выпуск, посвящённый 50-летию ЦГЭ, с. 118-125.
  10. V. Druskin, S. Güttel and L. Knizhnerman
    Compressing variable-coefficient exterior Helmholtz problems via RKFIT
    MIMS Eprint 2016.53.
  11. А. С. Кашик, Л. А. Книжнерман, О. М. Косенков, М. Д. Хусид, В. А. Клименко, Т. Р. Салахов, Д. Р. Шакуров, К. Р. Юлмухаметов
    Оценка эффективности работы прибора многоэлектродного бокового каротажа высокого разрешения и пакета программ обработки результатов его измерений
    Нефть. Газ. Новации, 2016, № 10, с. 64-71.
  12. А. С. Кашик, Л. А. Книжнерман, М. Д. Хусид
    Изменение конструкции обсадной колонны с целью оптимизации разработки залежи углеводородов
    Бурение и нефть, 2016, № 9, с. 56-60.
  13. V. Druskin, S. Güttel and L. Knizhnerman
    Near-optimal perfectly matched layers for indefinite Helmholtz problems
    SIAM Review, 2016, v. 58, No 1, p. 90-116.
  14. А. С. Кашик, Л. А. Книжнерман, О. М. Косенков, М. Д. Хусид
    Разработка пакета вычислительно-математических программ для обработки результатов измерений прибора многоэлектродного бокового каротажа МнБК
    XXI научно-практическая конференция «Новая техника и технологии для геофизических исследований скважин», тезисы докладов, с. 41-53. Уфа, изд-во НПФ "Геофизика", 2015.
  15. М. Д. Хусид, А. С. Кашик, Л. А. Книжнерман
    Состояние и перспективы развития электрического каротажа скважин, обсаженных металлической колонной
    Материалы VIII-го Китайско-Российского симпозиума по промысловой геофизике, КНР, г. Пекин, 2014, с. 45-54.
  16. P. Childs, V. Druskin, L. Knizhnerman
    Preconditioning the Helmholtz Equation using approximate Dirichlet-to-Neumann operators on optimal grids
    IMA Conference on Numerical Linear Algebra and Optimization, University of Birmingham, September 2014.
  17. М. Д. Хусид, А. С. Кашик, Л. А. Книжнерман
    Оптимизация электрокаротажа и электротеплового воздействия в обсаженных скважинах путем изменения конструкции колонны
    Геофизика, 2014, № 4, с. 69-73.
  18. А. С. Кашик, Л. А. Книжнерман, М. Д. Хусид
    Технология повышения нефтеотдачи залежи с трудноизвлекаемыми запасами путем электротеплового воздействия на прискважинную область
    Материалы 4-ой Международной конференции по актуальным вопросам инновационного развития нефтегазовой отрасли ЭНЕРКОН-2013. – М., 2013.
  19. Y. Lin, A. Abubakar, T. M. Habashy, G. Pan, M. Li, V. Druskin, L. Knizhnerman
    Schemes for improving efficiency of pixel-based inversion algorithms for electromagnetic logging-while-drilling measurements
    SEG Technical Program Expanded Abstracts 2012: 1-5.
  20. М. Д. Хусид, А. С. Кашик, Л. А. Книжнерман, А. Р. Клепацкий
    Моделирование разработки месторождений высоковязких нефтей и природных битумов при использовании электротеплового воздействия на пласт с одновременным контролем нефтенасыщенности за колонной
    Геофизика, 2012, специальный выпуск к 45-летию ЦГЭ, с. 117-122.
  21. S. Güttel and L. Knizhnerman
    A black-box rational Arnoldi variant for Cauchy-Stieltjes matrix functions
    BIT, 2013, v. 53, issue 3, p. 595-616.
  22. А. С. Кашик, Л. А. Книжнерман, А. Р. Клепацкий, М. Д. Хусид
    Моделирование электротеплового воздействия на прискважинную область при разработке месторождения высоковязкой нефти
    Экспозиция Нефть Газ, 2012, № 6 (24), с. 68-72.
  23. Л. А. Книжнерман, С. В. Щедрина
    Использование программы решения прямой осесимметричной задачи электрокаротажа с арифметикой повышенной точности для моделирования некоторых каротажных зондов
    Геофизика, 2012, специальный выпуск к 45-летию ЦГЭ, с. 129-132.
  24. Л. А. Книжнерман
    Уточнённая формула синтетического алгоритма зонда КР-1 для электрического каротажа через стальную колонну
    Геофизика, 2012, специальный выпуск к 45-летию ЦГЭ, с. 123-128.
  25. А. С. Кашик, Л. А. Книжнерман, М. Д. Хусид
    Моделирование электротеплового воздействия на пласт при разработке месторождений высоковязкой нефти и природных битумов
    ХIХ-ые Губкинские чтения «Инновационные технологии прогноза, поисков, разведки и разработки скоплений УВ и приоритетные направления развития ресурсной базы ТЭК России», Тезисы докладов., М., РГУ нефти и газа им. И. М. Губкина, 2011, с. 79-80.
  26. Yong‐Hua Chen, Dzevat Omeragic, Vladimir Druskin, Chih‐Hao Kuo, Tarek Habashy, Aria Abubakar, Leonid Knizhnerman
    2.5D FD modeling of EM directional propagation tools in high‐angle and horizontal wells
    SEG Technical Program Expanded Abstracts 2011: 422-426.
  27. S. Güttel and L. Knizhnerman
    Automated parameter selection for rational Arnoldi approximation of Markov functions
    PAMM Proc. Appl. Math. Mech., 2011, v. 11, issue 1, p. 15-18.
  28. M. Zaslavsky, V. Druskin and L. Knizhnerman
    Solution of 3D time-domain electromagnetic problems using optimal subspace projection
    Geophysics, 2011, v. 76, issue 6, p. F339–F351.
  29. V. Druskin, L. Knizhnerman and V. Simoncini
    Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation
    SIAM J. Numer. Anal., 2011, v. 49, No. 5, p. 1875-1898.
  30. M. Zaslavsky, V. Druskin, S. Davydycheva, L. Knizhnerman, A. Abubakar and T. Habashy
    Hybrid finite-difference integral equation solver for 3D frequency domain anisotropic electromagnetic problems
    Geophysics, 2011, v. 76, No. 2, p. F123-F137.
  31. L. Knizhnerman and V. Simoncini
    Convergence analysis of the Extended Krylov Subspace Method for the Lyapunov equation
    Numerische Mathematik, 2011, v. 118, No. 3, p. 567-586.
  32. L. Knizhnerman and V. Simoncini
    A new investigation of the extended Krylov subspace method for matrix function evaluations
    Numerical Linear Algebra with Applic., 2010, v. 17, No. 4, p. 615–638.
  33. С. И. Билибин, А. С. Кашик, А. Р. Клепацкий, Л. А. Книжнерман, М. Д. Хусид
    Решение прямых задач электрокаротажа как основа теории развития методов контролируемой добычи вязких нефтей
    Материалы VI-го Китайско-Российского симпозиума по промысловой геофизике, часть II, КНР, г. Циндао, 2010, с. 72-87.
  34. V. Druskin, L. Knizhnerman and M. Zaslavsky
    Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts
    SIAM J. Sci. Comp., 2009, v. 31, No. 5, p. 3760-3780.
  35. L. Knizhnerman
    Sensitivity of the Lanczos recurrence to Gaussian quadrature data: How malignant can small weights be?
    J. Comp. Appl. Math., 2010, v. 233, No. 5, p. 1238-1244.
  36. Л. А. Книжнерман
    Аппроксимация Паде-Фабера марковских функций на вещественно-симметричных компактах
    Матем. заметки, 2009, т. 86, № 1, с. 81-94.
  37. L. Knizhnerman, V. Druskin and M. Zaslavsky
    On optimal convergence rate of the Rational Krylov Subspace Reduction for electromagnetic problems in unbounded domains
    SIAM J. Numer. Anal., 2009, v. 47, № 2, pp. 953-971.
  38. A. Abubakar, T. M. Habashy, V. L. Druskin, L. Knizhnerman, and D. Alumbaugh
    2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements
    Geophysics, 2008, v. 73, № 4, pp. F165–F177.
  39. Л. А. Книжнерман
    Квадратура Гаусса-Арнольди для <(zI-A)^{-1}φ,φ> и Паде-подобная рациональная аппроксимация функций марковского типа
    Матем. сб., 2008, т. 199, № 2, с. 27-48.
  40. Y. Zhang, A. Abubakar, T. Habashy, V. Druskin, L. Knizhnerman
    Parametric inversion algorithm for marine controlled‐source electromagnetic data
    SEG Technical Program Expanded Abstracts 2007: 569-573.
  41. В. Л. Друскин, Л. А. Книжнерман
    Очерк основных исследований Отдела математического моделирования ЦГЭ за 1981-2006 гг.
    Геофизика, 2007, № 4, с. 61-65.
  42. D.L. Alumbaugh, A. Abubakar, V. Druskin, T. Habashy, A. Zerilli, L. Knizhnerman, G.M. Hoversten
    Fast 2D forward and inversion algorithms for interpreting marine CSEM data
    Offshore Technology Conference, 1-4 May 2006, Houston, Texas, USA.
  43. M. Zaslavsky, S. Davydycheva, V. Druskin, A. Abubakar, T. Habashy and L. Knizhnerman
    Finite-difference solution of the three-dimensional electromagnetic problem using divergence-free preconditioners
    2006 SEG Annual Meeting, October 1 - 6, 2006 , New Orleans, Louisiana, 4 p.
  44. A. Abubakar, T. M. Habashy, V. Druskin, L. Knizhnerman and S. Davydycheva
    A 3D parametric inversion algorithm for triaxial induction data
    Geophysics, 2006, v. 71, p. 1-9.
  45. A. Abubakar, T. Habashy, V. Druskin, D. Alumbaugh, A. Zerelli, L. Knizhnerman
    Two‐and‐half‐dimensional forward and inverse modeling for marine CSEM problems
    SEG Technical Program Expanded Abstracts 2006: 750-754.
  46. A. Abubakar, T. M. Habashy, V. Druskin and L. Knizhnerman
    An enhanced Gauss-Newton inversion algorithm using a dual optimal grid approach
    IEEE Transactions on Geoscience and remote sensing, 2006, v. 44, № 6, p. 1419-1427.
  47. L. Borcea, V. Druskin and L. Knizhnerman
    On the sensitivity of Lanczos recursions to the spectrum
    Linear Algebra Appl., 2005, v. 396, pp. 103-125.
  48. A. Abubakar, T. M. Habashy, V. L. Druskin, D. Alumbaugh, P. Zhang, M. Wilt, H. Denaclara, E. Nichols, L. Knizhnerman
    A fast and rigorous 2.5D inversion algorithm for cross‐well electromagnetic data
    SEG Technical Program Expanded Abstracts 2005: 534-537.
  49. L. Borcea, V. Druskin and L. Knizhnerman
    On the continuum limit of a discrete inverse spectral problem on optimal finite difference grids
    Comm. Pure Appl. Math., 2005, v. 58, № 9, pp. 1231-1279.
  50. А. С. Кашик, Н. И. Рыхлинский, Л. А. Книжнерман, Р. И. Кривоносов, А. С. Степанов
    К вопросу об электрическом каротаже скважин, обсаженных стальными колоннами, аппаратурой на кабеле
    Каротажник, 2004, вып. 3-4 (116-117), с. 8-23.
  51. L. Knizhnerman
    Stability estimates on the Jacobi and unitary Hessenberg inverse eigenvalue problems
    SIAM J. Matrix Anal. Appl., 2004, v. 26, № 1, pp. 154-169.
  52. Aria Abubakar, Tarek M. Habashy, Vladimir Druskin, Sofia Davydycheva, Hanming Wang, Tom Barber, Leonid Knizhnerman
    A three‐dimensional parametric inversion of multi‐component multi‐spacing induction logging data
    SEG Technical Program Expanded Abstracts 2004: 616-619.
  53. S. Asvadurov, L. Knizhnerman and J. Pabon
    Finite-difference modeling of viscoelastic materials with quality factors of arbitrary magnitude
    Geophysics, 2004, v. 69, № 3, pp. 817-824.
  54. F. O. Alpak, C. Torres-Verdín, K. Sepehrnoori, Sheng Fang and Leonid Knizhnerman
    An extended Krylov subspace method to simulate single-phase fluid flow phenomena in axisymmetric and anisotropic porous media
    Journal of Petroleum Science and Engineering, 2003, v. 40, № 3-4, pp. 121-144.
  55. S. Asvadurov, V. Druskin, M. N. Guddati and L. Knizhnerman
    On optimal finite difference approximation of PML
    SIAM J. Numer. Anal., 2003, v. 41, № 1, pp. 287-305.
  56. L. Knizhnerman
    Adaptation of the Lanczos and Arnoldi methods to the spectrum, or why the two Krylov subspace methods are powerful
    Чебышёвский сборник, 2002, v. 3, № 2, pp. 141-164.
  57. S. Asvadurov, V. Druskin and L. Knizhnerman
    Application of the difference Gaussian rules to solution of hyperbolic problems. II. Global expansion
    J. Comput. Phys., 2002, v. 175, № 1, pp. 24-49.
  58. S. Asvadurov, L. Knizhnerman and J. Pabon
    Finite-difference modeling of viscoelastic materials with quality factors Q of arbitrary magnitude
    Schlumberger-Doll Research, TR OFSR/RN/2001/151/RTMI/C.
  59. C. Torres-Verdin, V. L. Druskin, Sheng Fang, L. A. Knizhnerman and A. Malinverno
    A dual-grid nonlinear inversion technique with applications to the interpretation of dc resistivity data
    Geophysics, 2000, v. 65, № 6, pp. 1733-1745.
  60. V. Druskin and L. Knizhnerman
    Gaussian spectral rules for second order finite-difference schemes
    Numer. Algorithms, 2000, v. 25, № 1-4, pp. 139-159.
  61. S. Asvadurov, V. Druskin, L. Knizhnerman
    Application of the difference Gaussian rules to solution of hyperbolic problems
    J. Comput. Phys., 2000, v. 158, pp. 116-135.
  62. D. Ingerman, V. Druskin and L. Knizhnerman
    Optimal finite difference grids and rational approximations of the square root. I. Elliptic problems
    Communic. on Pure and Appl. Math., 2000, v. 53, № 8, pp. 1039-1066.
  63. L. Knizhnerman
    On GMRES-equivalent bounded operators
    SIAM J. Matrix Anal. Appl., 2000, v. 22, № 1, pp. 195-212.
  64. V. Druskin and L. Knizhnerman
    Gaussian spectral rules for the three-point second differences: I. A two-point positive definite problem in a semi-infinite domain
    SIAM J. Numer. Anal., 1999, v. 37, № 2, pp. 403-422.
  65. L. Knizhnerman
    Error bounds for the Arnoldi method: a set of extreme eigenpairs
    Linear Algebra and Appl., 1999, v. 296, № 1-3, pp. 191-211.
  66. V. L. Druskin, L. A. Knizhnerman and Ping Lee
    New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry
    Geophysics, 1999, v. 64, № 3, pp. 701-706.
  67. B. Anderson, T. Barber, V. Druskin, Ping Lee, E. Dussun, L. Knizhnerman and S. Davydycheva
    The response of multiarray induction tools in highly dipping formations with invasion and in arbitrary 3D geometries
    The Log Analist, 1999, v. 40, № 5, pp. 327-344.
  68. M. van der Horst, V. Druskin, L. Knizhnerman
    40. Modeling Induction Logs in 3-D Geometries
    Three-Dimensional Electromagnetics (1999): pp. 611-622.
  69. A. Greenbaum, V. L. Druskin, and L. A. Knizhnerman
    On solving indefinite linear systems by means of the Lanczos method
    Журн. вычисл. математики и матем. физики, 1999, т. 39, № 3, с. 371-377.
  70. V. Druskin, L. Knizhnerman and T. Tamarchenko
    Fast difference-differential method for geophysical electrodynamics
    In: K.K. Roy, S.K. Verma, and K. Mallick (ed.), Advances in Deep Electromagnetic Exploration, Narosa Publishing House, New Delhi, India and Springer Verlag, Heidelberg, Germany, 1998.
  71. V. Druskin and L. Knizhnerman
    Extended Krylov subspaces: approximation of the matrix square root and related functions
    SIAM J. Matrix Anal. Appl., 1998, v. 19, № 3, pp. 755-771.
  72. V. Druskin, A. Greenbaum, and L. Knizhnerman
    Using nonorthogonal Lanczos vectors in the computation of matrix functions
    SIAM J. Sci. Comp., 1998, v. 19, № 1, pp. 38-54.
  73. B. I. Anderson, V. Druskin, Ping Lee, M. G. Luling, E. Schoen, J. Tabanou, P. Wu, S. Davydycheva, and L. Knizhnerman
    Modeling 3-D effects on 2-MHz LWD resistivity logs
    In: Transactions of the SPWLA (Society of Professional Well Log Analysts) Thirty-Eighth Annual Logging Symposium, June 15-18, 1997: Houston, Tex., Society of Professional Well Log Analysts, Paper N, 14 p.
  74. V. Druskin, L. Knizhnerman, S. Kostek and T. Tamarchenko
    Krylov subspace reduction and its extensions for option pricing
    Comput. Finance, 1997, v. 1, № 1.
  75. Л. А. Книжнерман
    Простой процесс Ланцоша: оценки погрешности гауссовой квадратурной формулы и их приложения
    Журн. вычисл. математики и матем. физики, 1996, т. 36, № 11, с. 5-19.
  76. L. Knizhnerman
    On adaptation of the Arnoldi method to the spectrum
    Schlumberger-Doll Research, Res. Note #EMG-001-96-03, February 12, 1996.
  77. V. Druskin and L. Knizhnerman
    Exponential split preconditioning of Krylov subspaces to compute functions of elliptic operators, illustrated by the 3-D diffusion and Maxwell equations
    Schlumberger-Doll Research, Rep. № EMG-001-95-23, November 29, 1995.
  78. V. Druskin and L. Knizhnerman
    Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic
    Numer. Linear Algebra with Appl., 1995, v. 2, № 3, pp. 205-217.
  79. Л. А. Книжнерман
    Качество аппроксимаций к хорошо отделённому собственному значению и расположение «чисел Ритца» в простом процессе Ланцоша
    Журн. вычисл. математики и матем. физики, 1995, т. 35, № 10, с. 1459-1475.
  80. M. van der Horst, V. Druskin, L. Knizhnerman
    Modelling the response of induction logging tools in 3D geometries with the Spectral Lanczos Decomposition Method
    Schlumberger-Doll Research, Res. Note #EMG-001-95-18, September 18, 1995.
  81. L. Knizhnerman
    On adaptation of the Lanczos method to the spectrum
    Schlumberger-Doll Research, Res. Note #EMG-001-95-12, May 12, 1995.
  82. L. Knizhnerman, V. Druskin, Quing-Huo Liu, and F.J. Kuchuk
    Spectral Lanczos decomposition method for solving single-phase fluid flow in porous media
    Numer. Methods for Partial Different. Equations, 1994, № 10, pp. 569-580.
  83. V. Druskin, L. Knizhnerman
    Spectral approach to solving three-dimensional Maxwell's diffusion equations in the time and frequency domains
    Radio Science, 1994, v. 29, № 4, pp. 937-953.
  84. V. Druskin and L. Knizhnerman
    On application of the Lanczos method to solution of some partial differential equations
    J. Comput. Appl. Math., 1994, v. 50, № 1-3, pp. 255-262.
  85. Vladimir Druskin, Leonid Knizhnerman
    An efficient new method for solving large‐scale electromagnetic problems in inhomogeneous conductive media in the time and frequency domains
    SEG Technical Program Expanded Abstracts 1993: 358-359.
  86. A. Hordt, V. Druskin, L. Knizhnerman, and K.-M. Strack
    Interpretation of 3-D effects in deep transient electromagnetic (LOTEM) soundings in the Münsterland area (Germany)
    Geophysics, 1992, v. 57, № 9, pp. 1127-1137.
  87. Л. А. Книжнерман
    Оценки погрешности метода Арнольди: случай нормальной матрицы
    Журн. вычисл. математики и матем. физики, 1992, т. 32, № 9, с. 1347-1360.
  88. V. Druskin and L. Knizhnerman
    Evaluations for Krylov subspace approximation to internal eigenvalues of large symmetric matrices and bounded self-adjoint operators with continuous spectrum
    Schlumberger-Doll Research, Res. Note, September 2, 1992.
  89. V. Druskin and L. Knizhnerman
    The Lanczos optimization of a splitting-up method to solve homogeneous evolutionary equations
    J. Comput. Appl. Math., 1992, v. 42, № 2, pp. 221-231.
  90. Л. А. Книжнерман
    Вычисление функций от несимметричных матриц с помощью метода Арнольди
    Журн. вычисл. математики и матем. физики, 1991, т. 31, № 1, с. 5-16.
  91. В. Л. Друскин, Л. А. Книжнерман
    Оценки ошибок в простом процессе Ланцоша при вычислении функций от симметричных матриц и собственных значений
    Журн. вычисл. математики и матем. физики, 1991, т. 31, № 7, с. 970-983.
  92. В. Л. Друскин, Л. А. Книжнерман
    Два полиномиальных метода вычисления функций от симметричных матриц
    Журн. вычисл. математики и матем. физики, 1989, т. 29, № 12, с. 1763-1775.
  93. А. С. Кашик, Л. А. Книжнерман
    О повышении устойчивости постановок обратных задач геофизики
    Геология и геофизика, 1989, № 1, с. 126-129.
  94. Л. А. Книжнерман
    Численный метод продолжения потенциальных полей с ограниченного участка земной поверхности
    Изв. АН СССР, сер. «Физика Земли», 1988, № 12, с. 23-30.
  95. В. Л. Друскин, Л. А. Книжнерман
    Спектральный дифференциально-разностный метод численного решения трёхмерных нестационарных задач электроразведки
    Изв. АН СССР, сер. «Физика Земли», 1988, № 8, с. 63-74.
  96. Л. А. Книжнерман
    О приложениях метода оптимальных коэффициентов к численному решению некоторых задач математической физики
    Изд-во Саратовского ун-та, «Исследования по теории чисел», 1988, с. 32-38.
  97. В. Л. Друскин и Л. А. Книжнерман
    Об одном итерационном алгоритме решения двумерной обратной задачи электрокаротажа
    Геология и геофизика, 1987, № 9, с. 118-123.
  98. Л. А. Книжнерман, В. З. Соколинский
    О тригонометрических суммах и суммах символов Лежандра с большими и малыми модулями
    Изд-во Саратовского ун-та, «Исследования по теории чисел», 1987, с. 76-89.
  99. В. Л. Друскин, Л. А. Книжнерман
    Метод решения прямых задач электрокаротажа и электроразведки на постоянном токе
    Изв. АН СССР, сер. «Физика Земли», 1987, № 4, с. 63-71.
  100. В. Л. Друскин, Л. А. Книжнерман
    Использование операторных рядов по ортогональным многочленам при вычислении функций от самосопряжённых операторов и обоснование феномена Ланцоша
    М., ИЗМИР АН СССР, деп. в ВИНИТИ 02.03.1987, № 1535-В27, 47 с.
  101. В. Л. Друскин, А. С. Кашик, Л. А. Книжнерман, О. М. Косенков
    Решение обратной задачи электрокаротажа для осесимметричных неоднородных моделей
    «Матем. методы идентификации в задачах геологии», М., Наука, 1985, с. 109-116.
  102. Л. А. Книжнерман
    Эффективность распознавания как способа выбора параметра регуляризации при аналитическом продолжении потенциальных полей разложением в ряды Чебышёва
    Изв. АН СССР, сер. «Физика Земли», 1985, № 5, с. 87-90.
  103. Л. А. Книжнерман
    Выделение полюсов потенциальных полей с помощью разложения в ряды Фурье-Чебышёва
    Изв. АН СССР, сер. «Физика Земли», 1984, № 11, с. 119-123.
  104. Л. А. Книжнерман
    Численное решение задачи Коши для уравнения Лапласа с помощью разложения в ряды Фурье-Чебышёва
    Изв. АН СССР, сер. «Физика Земли», 1984, № 10, с. 76-81.
  105. В. А. Милашин, Л. А. Книжнерман
    Первый опыт оптимизации схем полевых наблюдений при помощи ЭВМ
    ВНИИОЭНГ, "Нефтегаз. геология, геофизика и бурение", 1984, вып. 8, с. 24-26.
  106. Л. А. Книжнерман
    Оценка погрешности нелинейного вариационно-регуляризирующего метода выделения полюсов потенциальных полей
    Редколл. журн. «Изв. вузов», отд. «Геол. и разведка», деп. в ВИНИТИ 09.09.1983, № 5173-83 Деп., 15 с.
  107. Л. А. Книжнерман
    Адаптивный вариационно-регуляризирующий метод решения задачи Коши для двумерного уравнения Лапласа
    Редколл. журн. "Изв. вузов", отд. «Геол. и разведка», деп. в ВИНИТИ 09.09.1983, № 5170-83 Деп., 8 с.
  108. В. Л. Друскин, Л. А. Книжнерман
    Об определении первой границы в двумерной обратной задаче электроразведки
    Наука, «Матем. методы идентификации моделей в геологии», 1983, с. 126-134.
  109. Л. А. Книжнерман, В. А. Кронрод, В. З. Соколинский, В. В. Щенников
    О численном решении трёхмерного нелинейного уравнения Пуассона
    Сиб. энерг. ин-т, «Численные методы анализа», 1980, с. 89-93.
  110. Л. А. Книжнерман
    Теоретико-числовой метод решения задачи Коши для уравнения Пуассона
    МГПИ, деп. в ВИНИТИ 21.04.1980, № 1568-80 Деп., 22 с.
  111. Л. А. Книжнерман
    Теоретико-числовой метод решения некоторых задач для уравнений в частных производных
    МГПИ, деп. в ВИНИТИ 26.02.1980, № 712-80 Деп., 24 с.
  112. Л. А. Книжнерман, В. З. Соколинский
    Некоторые оценки рациональных тригонометрических сумм и сумм символов Лежандра
    Успехи матем. наук, 1979, т. 34, № 3, с. 199-200.
  113. Л. А. Книжнерман, В. З. Соколинский
    О неулучшаемости оценок А. Вейля для рациональных тригонометрических сумм и сумм символов Лежандра
    МГПИ, деп. в ВИНИТИ 29.05.1979, № 2152-79 Деп., 15 с.
  114. Л. А. Книжнерман, В. А. Кронрод, В. З. Соколинский
    Численное решение нелинейного уравнения Пуассона
    Инженерно-физ. журн., 1979, т. 36, № 6, с. 1077-1079.
  115. Л. А. Книжнерман, В. А. Кронрод, В. З. Соколинский
    Численный метод решения уравнения Пуассона с повышенным порядком точности
    Изд-во МГПИ, «Вычислит. матем. и прогр.», 1978, вып. 7, с. 12-14.
  116. В. А. Кронрод, Л. А. Книжнерман, В. З. Соколинский
    Некоторые численные эксперименты по решению уравнения Пуассона быстро сходящимся экономичным методом
    Изд-во МГПИ, «Вычислит. матем. и прогр.», 1978, вып. 6, с. 130-135.

Список патентов

  1. Paul N. Childs, Ivan Graham, James Douglas Shanks, Vladimir L. Druskin and Leonid Knizhnerman
    Wave equation processing
    Patent WO 2014057440 A1, Schlumberger Technology B.V., 2014.
  2. Vladimir Druskin, Ping Lee and Leonid Knizhnerman
    Method, apparatus, and article of manufacture for solving 3d Maxwell equations in inductive logging applications
    Patent WO 1998028637 A2, Schlumberger Technology B.V, 1998.

К началу страницы